
R HumanFactorsinComputingSystems CHI’940 “Celeb~atingInterdependence”

A Taxonomy of See-Through Tools
Eric A. Bier, Maureen C. Stone, Ken Fishkin, William Buxton f, Thomas Baudel$

Xerox PARC, 3333 Coyote Hill Rd., Palo Alto, CA 94304

~University of Toronto, CSRI, Toronto, ON, Canada, M5S 1A4

$Universite de Paris-Sud, LRI, 91405 Orsay Cedex, France

E-mail: {bier, stone, fishkin} @pare.xerox.tom, winy @dgp.toronto.edu, thomas @ lri.fr

ABSTRACT

In current interfaces, users select objects, apply operations, and

change viewing parameters in distinct steps that require

switching attention among several screen areas. Our See-

Through InterfaceTht software reduces steps by locating tools

on a transparent sheet that can be moved over applications

with one hand using a trackball, while the other hand controls

a mouse cursor. The user clicks through a tool onto applica-

tion objects, simultaneously selecting an operation and an

operand. Toois may include graphical filters that display a

customized view of application objects. Compared to tradi-

tional interactors, these tools save steps, require no permanent

screen space, reduce temporal modes, apply to multiple appli-

cations, and facilitate customization. This paper presents a

taxonomy of see-through tools that considers variations in

each of the steps they perform. As examples, we describe

particular see-through tools that perform graphical editing and

text editing operations.

CR Categories and Subject Descriptors: 1.3.6 [Computer

Graphics]: Methodology and Techniques—interaction tech-

niques; H.5.2 [Information Interfaces and Presentation]:

User Interfaces—interaction styles; 1.3.3 [Computer Graph-

ics]: Picture/Image Generation—viewing algorithms; 1.3.4

[Computer Graphics]: Graphics Utilities—graphics editors

Key Words: user interface, control panel, transparent, multi-

hand, viewing filter, button, lens, menu, macro

INTRODUCTION

With software applications becoming more complex, it is

difficult to organize user interfaces so that application func-

tionality is easy to find, easy to learn, and quick to use.

Limited screen space encourages the use of tools such as pop-

up menus and hierarchical menus, which take time and

attention to activate, and temporal modes, which cause

confusion. Users must often select objects, apply operations,

and change viewing parameters in distinct steps that require

switching attention among several screen areas. In addition,

the non-dominant hand is often relegated to trivial activities,

such as holding down a modifier key, that do not make full use

of its capabilities. A new user interface paradigm, the See-

Through InterfaceTN1 system, addresses these issues.

Our interface allows users to interact with applications through

a set of movable senli-transparent tools, called see-through
tools or click-through tools. These tools are organized onto a

sheet, called a ToolglassTM sheet. Tools may include graphical

filters, called Magic LensTM filters, that present a modified

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

CH194-4/94 Boston, Massachusetts USA

01994 ACM 0-89791 -650-6194103 !58... $3.50

view of the shapes underneath them. The toolglass sheet can

be positioned with the non-dominant hand and triggered with

the dominant hand. For example, a right-handed user may

translate and resize the sheet using a trackball and thumbwheel

with the left hand and apply the tools by positioning a cursor

using a mouse in the right hand. Together, the cursor,

toolglass sheet, and applications create a three-layer interface

as shown in figure 1. Tools are grouped into units called tiles.
A toolglass sheet displays one tile at a time, just as a

HyperCard stack [10] displays one card at a time.

Cursor

Toolglass
Sheet /oL3?D/

‘pp’ica’iO-
Figure 1. The three layers of our interface.

Click-through tools are used in two, possibly simultaneous,

steps. First, the user positions the tool over an application

object. Second, the user clicks on that object, through the tool,

with a cursor. For example, in figure 2, the user has placed a

color-changing tool (shown in thick lines) over a circle and a

triangle (shown in thin lines). The triangle in the upper left

corner of the tool shows the color that it applies. The user ap-

plies the color to the circle by clicking a mouse button while

the cursor arrow is over both the tool and the circle.

Figure 2, A click-through button is used to change the
area color of a circle.

Click-through tools can save steps relative to traditional

interactors. For example, the tool in figure 2 selects both an

operation to apply (change color) and an object to apply it to

(the circle) in a single two-handed gesture. This can save time
and reduce cognitive load, because the user can combine more

steps into a single mental “chunk” [6]. Initial user studies

show performance improvements and user preference for

click-through tools [13].

Toolglass sheets can be moved from application to application,

providing a common interface to several applications. For ex-

ample, the same button can be used to change the color of a

shape in a graphical editor or a word in a text editor. In addi-

tion, our interface alters the traditional relationship of applica-

tion programs and data; instead of loading a document into an

application program and then working within the limitations of

that program, the user can bring applications, in the form of

358

Boston,MassachusettsUSA* April24-28,1994 HumanFactorsinComputigSystems
Q

see-through tools, to the document.

See-through tools make good use of the coarse-positioning
skills of the non-dominant hand, which have been described

by Guiard [11]. However, unlike interfaces that require hold-

ing down modifier keys, this interface can be used, with

reduced speed, when only one hand is available; the user can

drag a tool into place with the mouse cursor and then apply it.

These tools have many other potential advantages. Tool glass

sheets take up no permanent screen space. See-through tools

replace temporal modes, which can be difficult to get into and

out of, with spatial modes, which are entered and exited by

moving the sheet. They allow the user’s gaze and the mouse

cursor to remain in the work area. They can be rearranged by

copying or dragging. They can be composed by overlapping,

providing users with a visual way to create their own macros.

They can be added incrementally to a user interface based on

traditional interactors. Finally, when a tool includes a magic

lens filter, it provides the user with a modified view of the ap-

plication objects that helps in the use of that tool.

The discovery of many examples of useful see-through tools

has made it clear that they define a large new design space for

user interfaces. In this paper, we describe some tools that we

have found interesting and instructive. We also describe a

taxonomy of see-through tools, which provides both an

overview of the see-through interface system for those inter-

ested in understanding its potential, and an understanding of

the ways that these tools may vary that will aid implementors

of such tools. We structure this material as a taxonomy

because our own exploration of the see-through interface par-

adigm proceeded by discovering particular tools and then

categorizing them. A previous paper on this interface de-

scribes its implementation and its uses for graphical editing

and visualization [4].

See-through tools have been implemented on several plat-

forms. Most of the tools described here are implemented in

the Multi-Device Multi-User Multi-Editor (MMM) frame-

work [3] in the Cedar programming environment [22], which

runs on SunOS. Tools for visualizing maps and editing graph-

ics are implemented in C++ in the X Window system. An im-

plementation on the Apple Macintosh is in use for human

factors studies [13]. The tools of figures 5, 6, 11, 14 and 15

are envisionments of tools that will be implemented in the

future; the rest are existing tools.

The rest of this paper is organized as follows. We describe

related work. Then we describe five basic steps in the opera-

tion of a see-through tool. The next five sections describe a

set of see-through tools that illustrate variations in each of

these five basic steps. In addition, each of these sections de-

scribes one or more types of variation of a given basic step and

expresses each type of variation as an axis of our taxonomy.

The remaining sections summarize the taxonomy and present

conclusions and plans for future work.

RELATED WORK

Our work on see-through tools builds on a large body of pre-

vious work in a number of disciplines, including two-handed

interfaces, movable tools, transparent tools, and visual filters.
In addition, the taxonomy presented here relates to previously

published taxonomies of user interface components.

Two-handed interfaces. As in VIDEOPLACE, our interface al-

lows the use of two hands simultaneously [14]. However, our

tools make an asymmetric use of the hands, with the non-

dominant hand defining a coarse frame in which the dominant

hand works. As noted by Guiard, such asymmetric bimanual

activity is both natural for people and very common in

everyday activities [11]. Buxton and Myers showed in a

scrolling and text selection activity that users tend to overlap

the use of both hands [7]. Our interface takes advantage of

this insight to support a general-purpose user interface para-

digm.

Movable too/s. Previous systems allow the user to position

commands over the application work area. For example,

Macintosh tear-off menus [16] can be dragged by their borders

and positioned for later use. Our tools differ in that the tool

and cursor can move independent y.

Transparent tools. Many CAD tools display partly-transpar-

ent stationary menus on top of the application work area. The

Markup graphics editor displayed a semi-transparent pop-up

menu of modes [17]. Recent work allows menus to be made

transparent in X windows [1]. One author has proposed the

use of transparent windows [20]. Our tools are unique in that

they are both two-handed and use the position of the cursor

over a tool and over the underlying application to determine

the result of an interaction.

Visua/filters. Many window systems include a movable pixel

magnifier to enlarge a region of the screen. Recent image

processing systems support a wide variety of filter operations

including composition of overlapping filters [19]. A portal in

the Pad system can present a modified view of the part of the

workspace seen through it [18]. Related work on visual filters

has been described in more detail [4]. Previous systems did

not allow the filter to be moved with the non-dominant hand

nor to be combined with click-through tools.

Taxonomies. In their classic paper, Foley and Wallace de-

scribe the value of virtual devices and identify pick, button,
locator, and valuator as categories of tools [9]. See-through

tools blur some of these categories. A click-through button

can also be a pick because the user can click on a button and an

application object at the same time. Likewise, a button can

also be a locotor because the user can click on a button and

specify an application position at the same time. While their

taxonomy is concerned almost exclusively with function, ours

includes issues of triggering, appearance, motion, and instanti-

ation.

OPERATION OF SEE-THROUGH TOOLS

The toolglass sheet is a layer between the cursor and the appli-

cation, as shown in figure 3. A tool on the sheet intercepts

input from the user and delivers modified input to the applica-

tion. Likewise, it intercepts display requests from the applica-

tion and produces a modified image on the screen. The tool

can be moved relative to both the application and the cursor.

Figure 3. Information flow in a see-through tool.

The italic labels in figure 3 show four steps in the operation of

359

M HumanFactorsinComputigSystems CHI’94* “CelebratingInterdependence”

a see-through tool: receiving a triggering event from the user

(Trigger), computing an action based on that event and having

an application perform that action (Actkm), computing the ap-

pearance of the tool and the application as seen through it
(Appearance), and moving over application objects (Motion),
A fifth step, instantiation on a toolglass sheet (171stantiatio71),is
not shown. This section defines and describes these five steps.

Trigger. As with traditional tools, the user can trigger a see-
through tool with a variety of actions including mouse clicks
or pen gestures. Any trigger may come to a tool via another
see-through tool that overlaps it.

Action, In response to a triggering event, a see-through tool

produces a command to be executed. This command may be

executed by the tool itself or passed to the application

underneath it. The action may cause data to flow from the tool

to the application and/or from the application to the tool, as

indicated by the bidirectional arrows in figure 3. While many

actions consist of a short message, actions may contain a large

quantity of data, such as an entire disk file. The action

produced may be applicable to only a single application, or

may be expressed in an application-independent format. Ap-

plication-independent commands implemented in our system

include selection, creation, deletion, and modification of

graphical properties, such as font and color. When several

see-through tools are composed by overlapping them, the

action may include contributions from each of these tools.

Appearance, Like traditional tools, a see-through tool may

draw a picture that identifies its boundary and function.

However, because it overlaps underlying applications, a tool’s

picture often contains elements that are transparent, transht-

cent, or small in order to avoid obscuring the application

underneath. In addition, a tool may modify the appearance of

the application underneath using a magic lens filter [4] [5] [2 1].

For example, a tool that selects text characters may display

visible symbols to distinguish SPACES from TABs. A related

paper describes many uses of movable filters in user interfaces

[21]. Thus, we discuss filters only briefly in this paper.

Motion. In general, a toolglass sheet and all of its tools trans-

late as a unit under the control of a 2D valuator such as a

trackball and resize as a unit under the control of a ID valuator

such as a thumbwheel. However, some tools may change their

relationship to the sheet (and to other tools), e.g., by

translating, rotation, or resizing. This relative motion may be

triggered either by an explicit request or in response to the

presence of particular applications or application objects below

the tool.

Insfanfiafion. Before it can be used, a see-through tool must

be instantiated on a toolglass sheet. The tool may appear
whenever this sheet is used, only when this sheet is in a

particular temporary mode, or only when this sheet is in a

particular position relative to the application. The tool may be

customized to a greater or lesser degree by the user. A tool

may be built from any number of see-through components; a

simple tool will have only one component, a complex tool may

have dozens or more.

Each of the next five sections considers one of the five steps,
presenting examples that illustrate variations in that step’s
behavior. Where several types of variation are present for a
single step, each type is discussed in its own subsection. Each
type of variation is an axis of our taxonomy.

TRIGGER

This section describes one axis of our taxonomy: trigger type.

The user can trigger a tool in a variety of ways, including

clicking with a mouse, dragging (pressing a mouse button,

moving the mouse while the button is held down and then

releasing at a new position), or gesturing (e.g., drawing a

stroke, character or symbol on the tool). In addition, tools can

receive input from other see-through tools that are layered

above them.

While the triggering events are familiar, doing them over see-

through tools instead of over editors or traditional interactors

allows more information to be extracted from each event; the

tool and the application are both under the cursor position, so

each token of the input can operate on the tool, the application

or both. For example, one click on the button of figure 1

chooses a command and an operand simtdtaneousl y.

Dragging events may begin inside a click-through button and

end outside of it. When applied to a shape creation palette this

results in a “drop-and-drag” (not drag-and-drop) operation, as

shown in figure 4. Here, each dashed shape is a click-through

button. When the mouse button goes down over a shape, a

copy of that shape is added to the scene, made opaque, and

attached to the cursor. The object then moves with the cursor

until the mouse button goes up, allowing fine positioning of

the new shape.

Figure 4. Drop-and-drag from a shape palette.

Dragging may also begin outside of a tool and end inside it.

For example, a shape may be dragged in a traditional way to a

printer icon located on the toolglass sheet, causing the docu-

ment to be printed. This is drag-and-drop with the target of

the drop on the sheet,

A stroke gesture may begin in one part of a tool and end in

another. Figure 5 shows a tool that combines single stroke

gestures (like those used in Kurtenbach’s Marking Menus

[15]) with pie menus [12]. In figure 5(a), the user strokes from

a graphical shape (a triangle) positioned under the circular

center button of the menu to a button labelled “Fill Color”, to

apply the fill color of the triangle to the rectangular prototype

object that is part of the tool. Conversely, in figure 5(b), the

user strokes from the “Dashes” button to the circular center

button to apply the dash pattern of the prototype to the triangle.

Figure 5(c) shows the result.

Figure 5. Property Sampler/Applicator. (a) Sampling fill
color. (b) Applying dashes. (c) The result.

A common problem with gesture interfaces is that it is hard for

the system to distinguish input that is intended as a gesture

Boston,MassachusettsUSA* April24-28,1994, HumanFactorsinComputigSystems, “’”
w

from input intended as writing or drawing. Our solution is to
use a see-through tool as the gesture interpreter. In figure 6,
the user moves a gesture-interpreting tool (solid black lines)

over a drawing and deletes a triangle with a gesture. Note that

the same gestures can be used in multiple applications because

the gesture interpreter can be moved from one application to

another.

Figure 6. A gesture tool. (a) A deletion gesture, ‘X’, is
made. (b) The triangle is deleted.

ACTION

This section describes seven axes of our taxonomy that are

related to the action step of a tool: input transparency, data

direction, data magnitude, application independence, applica-

tion, operation class, and composition.

Input Transparency

Inaddition to click-through tools, which pass commands and

cursor coordinates to the application beneath them, toolglass

sheets include traditional, click-m, tools, whose function does

not depend on the relative position of the cursor and the appli-

cation. Our click-on tools include simple buttons, radio but-

tons, cycling-value buttons, on-off buttons, sliders and dials.

Several of these buttons are used in the Lens Sampler tool

shown in figure7. This tool uses radio buttons to select a lens

shape and filter type. The slider modifies a lens parameter.

“Settings” is an on-off button that makes the radio buttons

appear or disappear. The navigation buttons are simple but-

tons that cause a different tile (set of tools), to be displayed.

Finally, the “Trackball Button” is a simple button that connects

the trackball and thumbwheel to this sheet, allowing them to

move and resize it. This connection is needed because several

sheets may be on-screen at once.

\
~&~gation Butions~ Radio Buttons

1

Figure 7. The Lens Sampler tile.

Data Direction

Our tools can both send commands and data to applications

and receive commands and data from them. Because it is po-
sitioned over the application, a tool can easily pick up applica-

tion shapes from the region under it or drop shapes into this

region. For example, the graphics clipboard of figure 8 picks
up a shape when the clipboard is empty and the user clicks on

a shape, as shown in figure 8(a). As the clipboard moves, it

displays a fragment of the copied shape (figure 8(b)). The

entire shape can be pasted somewhere else (figure 8(c)).

Moving the clipboard leaves the new copy behind while the

fragment continues to move with the tool (figure 8(d)).

Clicking the square in the upper left corner clears the tool for

reuse.

Some tools mostly send information to the application, such as

the shape creation palette of figure 4. Others mostly receive

information. For example, the Print Tool of figure 9(a) picks

up application shapes, clips them to a rectangle, positions them

on a page of specified size and creates a file that prints as

shown in figure 9(b).

aP@s

Figure 8. Graphics Clipboard.

(a)

Figure 9. The Print Tool (a) Specifying the print
parameters. (b) The resulting p~nted page: -

Data Magnitude

Some tools send only a small amount of information to the ap-

plication. The color-changing button of figure 2, for example,

sends two short commands, one to select the shape at the

mouse coordinates and another to change the color of that

shape. Other tools may send large amounts of information.

For example, the Clip Art tool, shown in figure 10, can transfer

an entire illustration in a single click. The bottom part of this

tooI is a hierarchical file browser, showing the sub-directories

and files in the current directory. Pressing the UP button

causes the tool to display the parent directory of the current

one. Clicking on a file icon with the left mouse button drops

the contents of the file into the application below. Clicking

with the middle mouse button causes the contents of that file to

be shown in the upper part of the tool; the tile of figure 10

shows the picture “/ClipArt/Arrows/TriangleArrows”. These

shapes can then be drop-and-dragged into the application.

I Clip Art TI

Standard CUC.Or Three Triangle
Arrow Arrows Arrows

Figure 10. The Clip Art tool.

Application Independence

Tools can be designed either to work over a single application

or to work over multiple applications. In the first case, the tool

and application can exchange commands and data in formats
specific to that application. In the second case, the tool must

either express commands and data in a standard format, or

must contain software to handle the data and commands of

each application over which it is used.

Application-independent tools are more valuable because the

361

Q HumanFactorsinCompuingSystems CHI’94~ “Celebratinginterdependence”

investment in learning to use them pays off in many different

contexts. This is in contrast to current tools that are bound’ to

an application, requiring, as Bruce Tognazzini put it, “having

to slide your entire house inside a hammer before you can

hang a picture on the wall” [8].

Application

See-though tools can beusedover virtually any screen-based

application, including illustrators, text editors, 3D modelers,

spreadsheets, and CAD packages. Another interesting possi-

bilityis tousesee-through tools over traditional tools. Forex-

ample, figure 11 shows atoolthat creates agraphical macro by

picking up click-on buttons from a traditional control panel.

Figure n(a) shows part of the control panel of a graphics

editor. These traditional iconic buttons set dash patterns and

determine whether lines will have round or square ends.

Figure Il(b)shows the macro tool. Theupper part ofthis tool

is a clipboard that copies buttons. The user has picked up a

dash pattern button and around-line-ends button by clicking

on them through this region (recall figure 8). The resulting

tool isplacedover an oval shape (which originally had a solid

border) and applied. Theresulting oval hasadash pattern with

round dots as shown.

m

. . . .
—. ..* n
---- ----

‘a) ~~knl in

(b)
●

Figure 11. Making a macro. (a) A traditional control
panel. (b) Applying a macro to an oval.

Operation Class

See-through tools can perform any operation that traditional

buttons can perform, plus other operations normally associated

with modes. In a graphics editor for example, these tools can

select, create, delete, and modify shapes. Examples of these

operations are shown throughout this paper. Here we describe

some unusual tools for deletion and modification.

Deletion tools can be built with magic lens filters that make it

easy to find the object to be deleted and make it easy to undo a

mistake. For example, a filter in the tool can show the objects

that were most recently deleted. Clicking on a “ghost” object

causes its deletion to be undone.

Of the many modification tools, see-through tools that modify

shape, position, size, or orientation are particularly interesting

because they can incorporate visual guidelines, such as the

alignment lines and circles of snap-dragging [2]. Figure 14,

which will be described below, is an example.

Figure 12. Color editor for fill and line colors.

See-through tools can also integrate the process of getting a

current value, modifying it, and applying it. The color editor

of figure 12 has four click-through buttons and six sliders.

The upper-left and upper-right rectangles pick up a line color

and fill color respectively. The red-green-blue sliders on the

left or the hue-saturation-value sliders on the right can modify

the color. The arrow in the middle shows the resulting color.

The lower-left and lower-right rectangles apply this color to

lines or filled regions, respectively. The shape in figure 12 is

receiving a new fill color.

Composition

Some see-through tools compose with other tools when the

tools are overlapped to form a stack. For example, we can

combine a fill-color setting tool with a line-color setting tool

to form a tool that sets both fill and line color.

To support composition, a tool must be willing to accept a

command that has come from another tool and emit a modified

command that blends its function into the received command.

This blending may be done in several ways: A tool may

append its command to end of the incoming one, prepend its

command to the beginning, or modify the incoming command

in a more general way. For example, a tool that protects
illustrations from being edited would remove, from any com-

mand it receives, all requests to edit the objects below.

APPEARANCE

This section describes two axes related to appearance: output

transparency and lens presence.

Output Transparency

Well-designed see-through tools must be visible enough to

see, but simple enough so as not to clutter the user’s view of

the applications below. For some tools, an acceptable appear-

ance may require using stippled, translucent, or transparent

regions. Some of our translucent tools use a color-tinting

magic lens filter [4] to draw their interiors.

Lens Presence

Adding a magic lens filter to a click-through tool can improve

the usability of the tool by revealing information appropriate to

the tool’s operation. Conversely, adding input handling to a

filter increases its utility, by making it possible to act on the

information revealed by the filter. Figure 13(a) shows a click-

through tool being used to select the hidden upper left corner

of a square. Figure 13(b) shows a filter that produces a

wireframe view of objects seen through it. Figure 13(c) is a

tool that combines the click-through tool and the filter to

create a tool that aids selection of hidden corners.

Figure 13. Three tools. (a) Vertex selector. (b) X-ray
filter. (c) Vertex selector with x-ray filter.

MOTION

This section describes one axis related to motion: moves with.

The toolglass sheet moves relative to objects on other layers,

including the cursor, the screen, and applications. Each of

these other objects provides a reference frame that a see-

through tool may move with. Most of our tools move and
resize as a unit with the sheet. However, our grid tools draw

their grids relative to the coordinate system of the screen (to

allow inter-application alignment) or relative to a particular

application.

Some tools are a hybrid, moving with the sheet some of the

time and with scene objects at other times. So long as the

362

Boston,MassachusettsUSAo April24-28,1994 HumanFactorsinComputingSystems
%?

object doesn’t move into the space of other tools, these

motions cause little confusion. For example, figure 14(a)

shows a tool whose parts translate relative to scene objects.

This alignment tool consists of two circles. When the center of

the tool is positioned near a scene vertex, the circles move to

snap their centers to that vertex using snap-dragging gravity

[2] as shown in figure 14(b). The user can then use the circles

to add a new line of known length as shown in figure 14(c).

This tool is like a template that is held in the non-dominant

hand while the user draws with the dominant hand.

no
+

(a) (b) (c)

Figure 14. An alignment circles tool,

Tools may even move with specific application objects. For

example, the large rectangle in Figure 15(b) is a magic lens

filter that creates a small control panel next to the left edge of

each text object. The control panel displays the current font

size of the text and includes arrows that increase or decrease

the font size when pressed. This tool replaces traditional tools

that select text, query its current size, and change that size.

mFairly large -F irly large

(a)
Smaller

(b)
+12 aller

Figure 15. A font-size tool. (a) Some text. (b) The filter
reveals font size controls. The user makes some text
larger.

Tools may move in a variety of ways including translating,

rotating, or scaling. For example, we envision a text creation

tool that can be rotated relative to the sheet. By rotating this

tool, the user indicates the orientation that new text will have.

INSTANTIATION

This section describes our final three axes, which relate to in-

stantiation: customization, persistence, and complexity.

Customization

See-through tools can be customized in a variety of ways.

Parameters can be changed with click-on tools such as sliders,

dials, and multi-valued buttons. In addition, a tool can be

moved or copied within a tile by clicking on a small button in

one corner of the tool with different mouse buttons.

Alternatively, when two toolglass sheets are overlapped, tools

can be “punched through” from one sheet to the other. If one

tool is copied on top of another tool, the tools are composed, if

possible, to form a macro. Customized tiles can be saved to

disk and retrieved for later use.

Persistence

Some see-through tools always appear in the same place on a

particular tile, or on all tiles (e.g., like the background card in

HyperCard). For example, the Navigation and Trackball but-

tons in figure 7 appear on all tiles of our Cedar implementa-
tion.

On the other hand, to reduce screen clutter, other tools appear
only when needed. For example, the radio buttons in figure 7

appear when the button named “Settings” is on and disappear

when it is off. Likewise, the font-size changing buttons of

figure 15 appear on] y when text strings are present.

Complexity

While many of the tools described here have only a small

number of components, powerful tools can be built having

many. For example, the color editor of figure 12 has two color

lifting buttons, two color applying buttons and six sliders.

Useful tools may be much more complicated than this, perhaps

combining all of the functionality of existing control panels or

property sheets into a single see-through tool.

SUMMARY OF THE TAXONOMY

Table 1 summarizes the axes of variation discussed in this

paper. This taxonomy is not complete. There are other kinds

of variation for each of the operational steps that have been

discussed and other operational steps to consider. However,

this taxonomy does provide an initial map of the design space

for see-through tools.

While a few of these 14 axes depend on each other, they are

largely orthogonal. Thus, any value on one axis can be

combined with almost any value on any other axis, resulting in

a large design space. The Composition and Input Transparen-

cy axes are related, in that composition rules on input make

sense only if some overlapped tools are click-through.

Persistence and Moves With are related in that tools that

appear in response to data will most likely move with that data
rather than with something else.

Trigger Type: -

Input Transparency:

Data Direction:

Data Magnitude:

Application Indep.:

Application:

Operation Class:

Composition:

Output Transparency:

Moves With:

Lens Presence:

Customization:

Persistence:

Comdexitv:

Click, Drag-out, Drag-in,

Drag-out-and-in, Gesture,

Overlapped tool

Click-through, Click-on

Down, Up, Both

Simple command, Database

No, Yes

Graphics, Text, Other click-

throughs, Traditional tools,

Select, Create, Delete, Modify, .

Append, Prepend, Modify

Opaque, Stippled, Translucent,

Transparent

Sheet, Application, Both, Object,

Cursor

No, Yes

None, Parameters, Editable

Always, Temporal mode,

Appears in context

Single part, Many parts. .
Table 1. 14 Taxonomy Axes and Typical Values.

As the examples in this paper indicate, interesting tools can be

found throughout the space determined by these axes.

CONCLUSIONS

We have constructed a taxonomy of see-through tools by

looking for variability in the ways they respond to five basic

events: triggering, generating an action, drawing, moving, and

instantiating. For each of these categories of response, we

found one or more types of variability, producing 14 axes in

our taxonomy. At the same time, we have presented over a

dozen examples of novel see-through tools that motivate the
different kinds of variability.

This paper does not present the only possible taxonomy of

see-through tools, and none of our example tools is likely to

be the best see-through tool for performing a given function.

However, our examples and taxonomy do show that, far from

being just a new way to present transparent menus, the see-

363

%?
HumanFactorsinComputingSystems CHI’94s “Celebratinglntera’ependerlce”

L--–

through interface system is a vast new design space for user

interface tools. Furthermore, effective tools can be found

throughout the space, making it well worth exploring.

This paper should help to stimulate the imaginations of those

interested in creating see-through tools. In addition it should

be of value to those building toolkits for see-through tools.

Each of our axes suggests a kind of tool variability that the

toolkit may need to support.

FUTURE WORK

Work continues to explore and extend our taxonomy of tools,

and to build and test these tools on a variety of platforms.

Tools are being designed for use over new applications, in-

eluding text editors, map visualizers, multi-media and spread-

sheets. We are developing alternative ways to position, size,

and navigate through these tools, including use with one hand.

Finally, weare designing additional human factors studies to

extend ourunderstanding of how see-through tools are used in

practice.

ACKNOWLEDGMENTS

We thank John Tukey for stimulating conversations and for

coining “Toolglass” as one word. We thank Randy Pausch for

ideas and encouragement, Tony DeRose for co-inventing the

magic lens filter concept, and Matt Conway for implementa-

tions of see-through tools on a new platform (X windows) and

in new domains. We thank Jock Mackinlay, Polle Zellweger,

Ken Pier and our anonymous reviewers for substantive

comments that lead to an improved taxonomy and paper.

Finally, we thank Xerox for its support.

Trademarks and Patents: Magic Lens, Toolglass and See-

Through Interface are trademarks of the Xerox Corporation.

Xerox is seeking legal protection for these ideas.

REFERENCES

1. Joel F. Bartlett. Transparent controls for interactive

graphics. WRL Technical Note TN-30, Digital

Equipment Corporation, Palo Alto, CA, July 1992.

9a. Eric A. Bier and Maureen Stone. Snap-dragging.

Proceedings of Siggraph ’86 (Dallas, August), Computer-

Graphics, Vol. 20, No. 4, ACM, 1986, pp. 233-240.

3. Eric A. Bier and Steve Freeman. MMM: a user interface

architecture for shared editors on a single screen.

Proceedings of the ACM SIGGRAPH Symposium on User

Inter f(ice Softwure and Technology (South Carolina,

November), ACM, 1991, pp. 79-86.

4. Eric A. Bier, Maureen C. Stone, Ken Pier, William

Buxton, and Tony D. DeRose. Toolglass and Magic

Lenses: The See-Through Interface. Proceedings of

Siggraph ’93 (Anaheim, August), Computer Graphics

Annual Conference Series, ACM, 1993, pp. 73-80.

5. Eric A. Bier, Maureen C. Stone, Ken Pier, Ken Fishkin,

Thomas Baudel, Matt Conway, William Buxton and Tony

DeRose. Toolglass and Magic Lenses: The See-Through

Interface (videotape, 10 minutes). In the formal video

program of this conference.

6. William Buxton. Chunking and phrasing and the design

of human-computer dialogues. Proceedings of the IFIP

Wor/d Computer Congress (Dublin, Ireland), 1986, pp.

475-480.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

William Buxton and Brad A. Myers. A study in two-

handed input. Proceedings of CHI ’86 Human Factors in

Con?puti7tg Syste7ns (Boston, April), ACM, 1986, pp.

321-326.

A, Brady Farrand, Marc Rochkind, Jean-Marie Chauvet,

Bruce Tognazzini, David C. Smith. Common elements in

today’s graphical user interfaces: the good, the bad, and

the ugly. proceedings of Interchi ’93, Human Factors ill

Computing Systems (Amsterdam, April), ACM, 1993, pp.

470-473.

J. D. Foley and V. L Wallace. The art of natural graphic

man machine conversation. Proceedings of the IEEE,

Vol. 62, No. 4, April 1974. Reprinted in IEEE Tutorial

on Computer Graphics (2nd cd.), pp. 315-324.

Danny Goodman. The Complete HyperCard Ha7Ldbook.

Bantam Books, 1987.

Yves Guiard. Asymmetric division of labor in human

skilled bimanual action: the kinematic chain as a model.

The Journa/ of Motor Behavior, Vol. 19, No. 4, 1987, pp.

486-517.

Don Hopkins. The design and implementation of pie

menus. Dr. Dobb’s Journal, Vol. 16, No. 12, December

1991, pp. 16-26.

Paul Kabbash, Abigail Sellen, and William Buxton. A

comparison of two-handed click-through tools to

traditional menu input. Included in these proceedings.

Myron W. Krueger, Thomas Gionfriddo, and Katrin

Hinrichsen. VIDEOPLACE—An artificial reality.

Proceedings of CHI ’85, Hun1u7z Factors in Col17puter

Syste]71s (San Francisco, April), ACM, 1985, pp. 35-40.

Gordon Kurtenbach and William Buxton. Issues in

combining marking and direct manipulation techniques.

Proceedings of the ACM Symposium 011User Interface

Software and Technology (UIST ‘91, S, Carolina,

November), ACM, 1991, pp. 137-144.

A4acDraw Manual. Apple Computer Inc. Cupertino, CA

95014, 1984.

William M. Newman. Markup. Alfo User’s Handbook,

Xerox Palo Alto Research Center, 3333 Coyote Hill Rd.,

Palo Alto, CA 94304, 1979.

Ken Perlin and David Fox. Pad: an alternative approach

to the computer interface. Proceedings of Siggraph ’93

(Anaheim, August), Computer Graphics Annual

Conference Series, ACM, 1993, pp. 57-64.

Image Vision, Silicon Graphics Inc., Mtn. View, CA.

Loretta Staples. Representation in virtual space: visual

convention in the graphical user interface, figure 14.

Proceedi)lgs of Inte>-chi ’93, HumzIII FactoJAs in

Computing Systen7s (Amsterdam, April), ACM, 1993, pp.

348-354.

Maureen C. Stone, Ken Fishkin, Eric A. Bier. The

movable filter as a user interface tool. Included in these

proceedings.

Daniel C, Swinehart, Polle T. Zellweger, Richard J.

Beach, and Robert B. Hagmann. A structural view of the

Cedar programming environment. ACM Tra7Lsuctions 072

Progra7)7~7~ing Languages uiui Sysrems, Vol. 8, No. 4,

ACM, 1986, pp. 419-490.

364

