Global and reactive routing in urban context:
first experiments / first difficulty assessment

Penélope A. Melgarejo
IBM, France

Thomas Baudel
IBM, France

Christine Solnon
INSA Lyon, France

September 15, 2012

1 Introduction

Optimod’Lyon (www.optimodlyon.com) is a project initiated by the Grand Lyon
to improve mobility in Lyon’s agglomeration. A first goal is to centralize all mo-
bility data and provide a service of prediction of traffic conditions during the day.
Another important goal (called Smart Deliveries) is to optimize planned tours
of transporters in a global, time-dependent and reactive way. The optimization
is global in the sense that all mobility demands are optimized at a whole; it
is time-dependent as predicted travel times vary during the day according to
predicted traffic conditions; and it is reactive as it dynamically adapts tours to
unexpected events like car accidents.

In this paper, we compare different Constraint Programming (CP) models for
addressing the Smart Deliveries routing problem. In this first study, we consider
a simplified version where only one tour is to be found, and we focus on the
ability to handle time-dependent data (wherein predicted travel times vary with
time), and additional constraints specific to each individual transporter (such as
time windows, ordering constraints to meet pickup-and-delivery types of moves,
as well as various preferences).

2 Definition of the optimization problem

We basically consider the Time-Dependent Traveling Salesman Problem (TDTSP),
which involves finding the shortest hamiltonian path in a complete asymmetric



graph whose vertices correspond to visit points. In the TDTSP, the cost c;; of
an arc (4,7) depends on the time of departure from i. More precisely, c;;(t) is
the expected duration of travelling from 4 to j when leaving ¢ within the time
window ¢. This time-dependent cost function is calculated during a preprocess-
ing step from the prediction of traffic conditions: for every couple (i,7) of visit
points and every time window ¢, we compute the shortest path from i to j when
leaving ¢ within ¢ by using the Time-Dependent Dijkstra algorithm [DSSW09).

3 CP models

State-of-the-art complete approaches for solving the TSP are based on Integer
Linear Programming (ILP) [App06]. However, some additional constraints are
difficult to express, for example, not being allowed to change the position of some
stops in the list of more than a given constant because of charging constraints
like the weight of the packet to be delivered.

Recent work [BvHR™12] has shown us that CP is competitive with state-
of-the-art special-purpose TSP solvers for medium size instances. Moreover,
additional constraints are often very easily expressed in CP, and they usually
strongly improve the solution process by reducing the search space in an a priori
way.

We compare two different CP models for the TDTSP, M1 and M2. Input
consists of n, the number of stops, m and s, the number of time steps and their
size, and a time-dependent cost matrix.

In M1 we have two types of variables, pos; gives the location of the i-th stop
in the tour and ¢; gives the time of departure from the i-th stop. Constraints are:
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For M2 we used scheduling tools, the variables are: stop;, time intervals rep-
resenting the start and the end of the stop at the i-th location, and tour, a
sequence of the interval variables stop. The three first constraints are the same,
the other two are:
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4 Experimental results

We tested both models with instances of 10, 15 and 20 stops randomly generated
with a model which simulates rush hours when defining time-dependent costs.
Tests were made using ILOG CPO 12.4 and CPU time was limited to 200
seconds per instance.

Evolution of objective through time
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Specifying search phases to M2 enhanced a lot its performance but did not
have the same effect on M1.

5 Conclusion

To choose the best approach to this problem we still have to test models with
real data from the city and transporters and also to compare performances with
ILP models [Brol2].

Some of our perspectives are to dynamically adapt tours to events interfering
on their routes, to consider more than one tour at a time and to robustify initial
route propositions through stochastic optimization.
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